Table IV. Second Molar Virial Coefficients B_{ij} and Liquid Molar Volumes V_i (cm³ mol⁻¹) as a Function of Temperature T

component	T/K	V_i	B_{ii}	B ₁₂	
pyrrolidine $(i = 1)$	313.15	84.7	-1235		
	313.35	84.7	-1233		
	333.15	86.6	-1054		
	333.35	86.6	-1052		
	353.15	88.4	-914		
cyclohexane (i = 2)	313.15	111.9	-1691	-1278	
	333.15	114.6	-1423	-1081	
water $(i = 2)$	333.15	18.4	-912	-479	
	353.15	18.8	-637	-415	
ethanol $(i = 2)$	313.15	59.2	-1652	-985	
	333.35	60.9	-1201	-847	
tetrahydrofuran ($i = 2$)	313.35	83.4	-1118	-1101	
-	000.05	040	050	0.07	

Figure 5. Molar excess enthalpy, H^{E} , for the pyrrolidine (1) + cyclohexane (2) system. The points are direct calorimetric measurements (13), and the lines resulted from the values of G^{E} generated from our vapor-liquid equilibrium measurements.

Tine and Kehiaian (16) that the cyclic secondary amine group in pyrrolidine may have to be considered a different functional group from the noncyclic secondary amine group in future improvements of the UNIFAC model. It is also worth noting that our VLE data reported here can be reproduced by the DISQ-UAC model with reported parameters (*17*), with average deviations in pressure of the order of 0.5 kPa and in composition of 0.01 or better.

Acknowledgment

We thank Dr. H. Kehiaian for his comments and for providing us with the results of the DISQUAC calculations.

Registry No. Pyrrolidine, 123-75-1; cyclohexane, 110-82-7; ethanol, 64-17-5; tetrahydrofuran, 109-99-9.

Literature Cited

- (1) Wu, H. S.; Sandler, S. I. J. Chem. Eng. Data 1988, 33, 157.
- (2) Wu, H. S.; Sandler, S. I. J. Chem. Eng. Data 1989, 34, 209.
- (3) Wu, H. S.; Sandler, S. I. AIChE J. 1989, 35 (1), 168.
- (4) Fredenslund, A.; Gmehling, J.; Rasmussen, P. Vapor-Liquid Equilibrium Using UNIFAC; Elsevier: Amsterdam, 1977.
- (5) Eng, R.; Sandler, S. I. J. Chem. Eng. Data 1984, 29, 156.
- (6) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents, Physical Properties and Methods of Purification; Techniques of Chemistry, Volume II, 4th ed.; Wiley: New York, 1986.
- (7) TRC—Thermodynamic Table—Hydrocarbons; Thermodynamics Research Center, The Texas A&M University System: College Station, TX, 1975; p k-1960, cyclohexane (loose-leaf data sheets).
- (8) TRC—Thermodynamic Table—Non-hydrocarbons; Thermodynamics Research Center, The Texas A&M University System: College Station, TX, 1964; p k-40, water; 1976, p. k-5000, ethanol; 1985, p. k-6170, tetrahydrofuran.
- (9) Hayden, J. G.; O'Connell, J. P. Ind. Eng. Chem. Process Res. Dev. 1975, 14, 209.
- (10) Kemeny, S.; Manczinger, J.; Skjold-Jorgensen, S.; Toth, K. AIChE J. 1982, 28, 20.
- (11) Cabani, S.; Ceccanti, N.; Tine, M. R. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1986, 185.
- (12) Cabani, S.; Conti, G.; Lepori, L. Trans. Faraday Soc. 1971, 67, 1933.
- (13) Cabani, S.; Ceccanti, N. J. Chem. Thermodyn. 1973, 5, 9.
- Srivastava, R.; Smith, S. D. J. Chem. Eng. Data 1985, 30, 308.
 Smith, B. D. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1985, 252.
 Abbott, M. M.; Karlsruher, S. A.; Smith, B. D. Int. DATA Ser., Sel. DATA Mixtures, Ser. A 1985, 259.
- (15) Reid, R. C.; Prausnitz, J. M.; Poling, B. E. The Properties of Gases and Liquids, 4th ed.; McGraw-Hill: New York, 1987.
- (16) Tine, M. R.; Kehiaian, H. V. Fluid Phase Equilib. 1987, 32, 211.
- (17) Kehiaian, H. V. Private communication, 1989.

Received for review May 23, 1989. Accepted November 27, 1989. The research reported here was supported, in part, by the National Science Foundation Grant CBT-8612285 to the University of Delaware.

Thermodynamics of Binary Mixtures Containing Alkanenitriles. 1. Excess Enthalpies of Some n-Alkanenitrile + n-Alkane or + Cyclohexane Mixtures

Bruno Marongiu* and Silvia Porcedda

Dipartimento di Scienze Chimiche, Universita di Cagliari, Via Ospedale 72, 09100 Cagliari, Italy

A Tian-Calvet-type calorimeter was used to determine excess enthalples, H^{E} , as a function of concentration at atmospheric pressure and 298.15 K for some binary liquid mixtures containing linear alkanenitriles of the general formula $CH_3(CH_2)_{n-2}CN$ (n = 2, 3, 4, 5) with *n*-alkanes (hexane, heptane) or cyclohexane.

Introduction

This work is part of a systematic study of the thermodynamic properties of organic mixtures, TOM Project (1-16), with the purpose of characterizing the type and magnitude of molecular interactions in binary liquid mixtures and to improve the group contribution models currently used to predict thermodynamic

Figure 1. Experimental molar excess enthalpies, *H*·e, of alkanenitrile (1) + heptane (2) mixtures at 298.15 K vs x_1 , the mole fraction of alkanenitrile: **I**, ethanenitrile; **O**, propanenitrile; O, butanenitrile; **A**, pentanenitrile.

properties. Mixtures containing short-chain nitriles + n-alkanes or + cyclohexane exhibit large positive deviations from ideality, often reflected in partial miscibility.

As the chain length of the nitrile increases, the positive deviations from ideality decrease and total miscibility becomes more common.

McLure et al. (7) reported the upper critical solution temperatures (UCST) for binary mixtures of ethanenitrile, propanenitrile, or butanenitrile with n-alkanes containing 5–18 carbon atoms.

The liquid–liquid equilibrium of ethanenitrile + cyclohexane has been carefully investigated by Vani et al. (8).

A search of the literature reveals that thermodynamic studies on alkanenitrile + alkane or + cyclohexane are rather scarce, and moreover some discordances exist in the results reported by different authors.

Molar excess enthalpies, H^{E} , of alkanenitrile + n-alkane or + cyclohexane have been measured calorimetrically by several authors (9-14).

In order to better characterize the behavior of the CN group, we decided to measure, or remeasure, H^{E} in a systematic way for mixtures of *n*-alkanenitriles $[CH_{3}(CH_{2})_{n-2}CN (n = 2-5)] + n$ -alkanes $[CH_{3}(CH_{2})_{m-2}CH_{3} (m = 6, 7)]$ or + cyclohexane $[C_{6}H_{12}]$.

Experimental Section

The enthalpies of mixing have been measured with use of a Tian-Calvet ("CRMT") type calorimeter manually tilted. The batch mixing cell and the experimental procedure are described elsewhere (15). The calorimeter was calibrated by Joule effect, and the calibration was repeated after each experiment.

The reliability of the apparatus and procedure adopted were checked by performing H^{E} measurements on the test system benzene + cyclohexane. Our results differed by <2% from literature data (16) over the entire composition range.

Table I. Experimental Molar Excess Enthalpies, H^E , at 298.15 K for Binary Mixtures of *n*-Alkanenitriles $[CH_3(CH_2)_{n-2}CN(1)] + n$ -Alkanes $[CH_3(CH_2)_{m-2}CH_3]$ or + Cyclohexane (2); Coefficients a_j , Equation 1; and Standard Deviations, $\sigma(H^E)$, Equation 2

Deviations,	$\sigma(H^{L}), \mathbf{E}$	quation 2			
	H^{E} ,		$H^{\mathbf{E}}$,		$H^{\mathbf{E}}$,
\boldsymbol{x}_1	J mol ⁻¹	\boldsymbol{x}_1	J mol ⁻¹	$\boldsymbol{x_1}$	J mol ⁻¹
		H CN (1)	+CH (2)		
0.0295	459	0.92574	505	0 9711	399
0.0200	550	0.51499	501	0.0909	022
0.0403	000	0.5145	100	0.0004	100
0.0507	634	0.7140"	403	0.9894	130
	СН	CH-CN	$(1) + C_{2}H_{2}$	(2)	
0 1059	794	0 3802	1/35	07103	1191
0.1000	1071	0.3032	1450	0.1100	849
0.1009	1071	0.4906	1409	0.0209	510
0.3136	1363	0.5844	1397	0.9035	919
$a_0 = 5822;$	$a_1 = -636;$	$a_2 = 1573$	$3; a_3 = -707;$	$\sigma(H^{\mathbf{E}}) =$	2.4 J mol ⁻¹
• •	1 ,	-			
	CU	CH CN	$(1) \pm O \mathbf{H}$	(9)	
0.0075	700		$(1) + O_7 n_{16}$	0 7050	1910
0.0975	720	0.3966	1515	0.7050	1010
0.1712	1055	0.4802	1545	0.7836	1095
0.3107	1410	0.6021	1483	0.9037	594
$a_0 = 6164$:	$a_1 = -292$	$a_{\rm p} = 1973$	8: $a_2 = -852$:	$\sigma(H^{\mathbf{E}}) =$	4.8 J mol ⁻¹
	,	-2	-, -, -,,	- ()	
	011			(0)	
	CH	₃ CH ₂ CN	$(1) + C_6 H_{12}$	(2)	
0.1018	731	0.4047	1515	0.7069	1229
0.1929	1129	0.5035	1522	0.7933	977
0.2815	1371	0.6043	1430	0.9217	433
6099.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ - 140	1 - 602	$-(\mathbf{H}\mathbf{E}) -$	0.9 I mol-1
$a_0 = 6088;$	$a_1 = -808;$	$a_2 = 140$	$1; a_3 = -693;$	$\sigma(n^{-}) =$	2.8 J moi -
	CH ₃	$(CH_2)_2CN$	$(1) + C_6 H_{14}$	(2)	
0.1058	630	0.4090	1249	0.7031	945
0.2051	966	0.4992	1235	0.8002	690
0.3044	1160	0.6025	1138	0.9027	359
0.0011	1100	0.0020		(
$a_0 = 4934;$	$a_1 = -1052$	2; $a_2 = 62$	7; $a_3 = -896$;	$\sigma(H^{E}) =$: 5.8 J mol ⁻¹
	CH.	(CH _a) _a CN	$(1) + C_{-}H_{+}$. (2)	
0.0950	614	0.3977	1300	0.6809	1120
0 2011	1011	0.5349	1285	0.8005	833
0.2011	1206	0.6082	1200	0.0000	449
0.2900	1200	0.0002	1220	0.0010	110
$a_0 = 5217;$	$a_1 = -669;$	$a_2 = 154$	1; $a_3 = -672$; $\sigma(H^{E}) =$: 2.6 J mol ⁻¹
	CH.	(CH _a) _a CN	$((1) + C_{a}H_{a})$	(2)	
0 1059	690	0 4025	1976	07346	912
0.1000	1051	0.4020	1260	0.1040	674
0.2120	1015	0.4302	1109	0.0102	415
0.3010	1210	0.0190	1190	0.0900	410
$a_0 = 5028; c$	$i_1 = -1103$; $a_2 = 129$	0; $a_3 = -113$	1; $\sigma(H^{\mathbf{E}})$	= 3.3 J mol ^{-:}
	CH.	(CH.).CN	(1) + C.H.	(2)	
0.0007	560	0 2040	1077	0.7041	810
0.0337	976	0.0049	1077	0.70091	620
0.2019	0/0	0.4997	1000	0.1900	052
0.2932	1019	0.6012	300	0.8899	300
$a_0 = 4207;$	$a_1 = -1102$	$a_2 = 114$	$a_3 = -813$	$: \sigma(H^{\mathbf{E}}) :$	= 3.0 J mol ⁻¹
•	1	-	Ū		
	CH		$(1) \pm C \mathbf{H}$	(0)	
0 1171		$(C \Pi_2)_3 C N$	$(1) + 0_7 \mathbf{n}_{10}$	3 (2)	077
0.1151	625	0.3804	1137	0.7066	8//
0.2158	924	0.4979	1133	0.8135	635
0.2928	1061	0.5762	1075	0.9011	380
$a_0 = 4517$:	$a_1 = -999$	$a_0 = 104$	5: $a_0 = -377$	$\sigma(H^{\rm E}) =$	5.9 J mol ⁻¹
a) 1017,	u1 000	, 0, 2 101	0, 43 0	, •(11 /	010 0 11101
	~	(011 \ 0-)	(1)	(0)	
	CH3	$(CH_2)_3CN$	$(1) + C_6 H_{12}$	$_{2}(2)$	
0.1088	630	0.4157	1129	0.6976	854
0.2136	941	0.4891	1108	0.7984	623
0.3142	1086	0.5987	1011	0.8960	345
$a_0 = 4405$	$a_1 = -1178$	$B: a_0 = 100$	$94: a_{2} = -976$	$\sigma(H^{\mathbf{E}})$	$= 2.8 \text{ J mol}^{-1}$
^a Two-ph	ase region	, w ₂ = 100		,, , , , , , , , , , , , , , , , , , , ,	2.0 0 1001
T 40-but	we region.				

All the measurements were carried out at 298.15 \pm 0.10 K. The experimental, $H_{\rm exp}$ values, reported in Table I, were fitted to the smoothing equation

$$H_{\rm sm}^{\rm E}/({\rm J}\ {\rm mol}^{-1}) = x_1 x_2 \sum a_j (x_1 - x_2)^j$$
 (1)

Figure 2. Experimental molar excess enthalpies, H^{E} , of alkanenitrile (1) + cyclohexane (2) mixtures at 298.15 K vs x_1 , the mole fraction of alkanenitrile: •, propanenitrile; O, butanenitrile; A, pentanenitrile.

where x_1 is the mole fraction of alkanenitrile and x_2 the mole fraction of *n*-alkane or cyclohexane.

The values of the coefficients a_i and the standard deviations $\sigma(H^{E}),$

$$\sigma(H^{\mathsf{E}}) = \left[\sum (H_{\mathsf{sm}}^{\mathsf{E}} - H_{\mathsf{exp}}^{\mathsf{E}})/(N-n)\right]^{1/2}$$
(2)

where N is the number of experimental points and n the number of coefficients a_i , were determined by a least-squares fit and are reported in Table I.

Our H^E measurements on propanenitrile or butanenitrile + hexane and butanenitrile + hexane agree to better than 3% with the data reported by McLure et al. (13).

Discussion

As shown in Figures 1 and 2, the values of H^{E} are large and positive; this behavior is mainly due to breaking of dipole-dipole interactions between the alkanenitrile molecules. Since the dipole moments (17) of the alkanenitriles are similar, it is the decreasing surface fraction of the CN group that determines the decrease of H^E with increasing number of -CH₂- groups in the alkanenitriles.

A detailed interpretation of these results in terms of the DISQUAC group contribution model (6) will be presented separately.

Glossary

- coefficients in eq 1
- ĤĔ molar excess enthalpy, J mol-1
- number of coefficients a_i in eq 1 n
- Ν number of experimental points
- Τ temperature. K
- mole fraction in liquid phase of component i (i = 1, ..., ...)X, alkanenitrile; i = 2, *n*-alkane or cyclohexane)
- $\sigma(H^{E})$ standard deviation, eg 2, J mol-1

Subscripts

- experimental value exp
- sm smoothed value

Literature Cited

- Kehiaian, H. V. Pure Appl. Chem. 1985, 57, 15. (1)
- (2)
- Kehiaian, H. V.; Marongiu, B. *Fluid Phase Equilib*. **1985**, *21*, 197. Kehiaian, H. V.; Marongiu, B. *Fluid Phase Equilib*. **1986**, *27*, 445. Marongiu, B.; Dernini, S.; Polcaro, A. M. J. Chem. Eng. Data **1986**, (3)
- $\{4\}$ *31.* 185.
- Marongiu, B.; Dernini, S.; Lepori, L.; Matteoli, E.; Kehlaian, H. V. J. (5)Chem. Eng. Data 1988, 33, 118.
- Kehiaian, H. V.; Marongiu, B. Fluid Phase Equilib. 1988, 40, 23. (6)McLure, I. A.; Trejo Rodriguez, A. T.; Ingham, P. A.; Steele, J. F. Fluid Phase Equilib. 1982, 8, 271. (7)
- Vani, V.; Guha, S.; Gopal, E. S. R. J. Chem. Phys. 1986, 84, 3999 Lakhanpal, M. L.; Mandal, H. G.; Ahuja, S. C. Indian J. Chem. 1981, (9)
- A20, 1008.
- (10) Palmer, D. A.; Smith, B. D. J. Chem. Eng. Data 1972, 17, 71.
 (11) Amaya, K. Bull. Chem. Soc. Jpn. 1961, 34, 1278.
- (12) Alessandrini, A.; Alessi, P.; Kikic, I. Ann. Chim. (Rome) 1980, 70, 293
- (13) McLure, I. A.; Trejo Rodriguez, A. J. Chem. Thermodyn. 1982, 14, 439. McLure, I. A. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1984, 154–171.
- Valero, J.; Gracia, M.; Gutierrez Losa, C. J. Chem. Thermodyn. 1983, (14)
- (15)(16)
- Jaros, J. G. Balla, M., Gullericz, Eosa, G. Solin, M. Instructy, Int. DATA Ser., Sel. Data Mixtures, Ser. A 1944, 172–179.
 Bares, D.; Soulie, M.; Metzger, J. J. Chim. Phys. 1973, 70, 1531.
 Marsh, K. N. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1973, 2.
 Harrison, R. D. Book of Data; Nuffield Advanced Science; Longman (17)Group: Harlow, Essex, England, 1984, p 110.

Received for review June 7, 1989. Revised September 14, 1989. Accepted November 28, 1989. This investigation was supported by the Ministero Pubblica Istruzione (Italia).

Solubilities of 2,5- and 2,6-Xylenols in Supercritical Carbon Dioxide

Yoshio Iwai, Hiroshi Yamamoto, Yoshiyuki Tanaka, and Yasuhiko Arai*

Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka 812, Japan

The solubilities of 2,5- and 2,6-xylenols in supercritical carbon dioxide were measured by using a flow-type apparatus at 308.15 K up to 27 MPa. The appearance of a liquid phase was seen for the $CO_2 + 2$,6-xylenol system though the equilibrium temperature was lower than the melting point of 2,6-xylenol. The solublittles of 2,5-xylenol were correlated by a three-constant cubic equation of state with the two characteristic parameters.

Introduction

Separation methods for coal-derived components have received considerable attention recently (1) for use as the raw materials of fine chemicals. The supercritical fluid extraction is showing promise as a separation method (2). Solubility data of coal-derived components in supercritical fluids are very important as a fundamental knowledge. Correlation methods are also important in the design of a supercritical extraction pro-